Sistem Persamaan Linear

Sistem persamaan linear adalah persamaan-persamaan linear yang dikorelasikan untuk membentuk suatu sistem. Sistem persamaannya bisa terdiri dari satu variabel, dua variabel atau lebih. Dalam bahasan ini, kita hanya membahas sistem persamaan linear dengan dua dan tiga variabel.

Lihat juga materi StudioBelajar.com lainnya:

Vektor

Deret Aritmatika & Geometri

Sistem Persamaan Linear Dua Variabel (SPLDV)

Sistem persamaan linear dua variabel adalah sistem persamaan linear yang terdiri dari dua persamaan dimana masing-masing persamaan memiliki dua variabel. Contoh SPLDV dengan variabel x dan y:

\begin{cases}ax+by=c \\ px-qy=r \end{cases}

dimana a, b, c, p, q, dan r adalah bilangan-bilangan real.

Penyelesaian SPLDV

Penyelesaian SP:DV bertujuan untuk menentukan nilai yang memenuhi kedua persamaan yang ada pada SPLDV. Penyelesaian SPLDV terdapat beberapa cara, yaitu:

Metode grafik

Pada metode grafik ini, langkah-langkah yang dilakukan pertama adalah menentukan grafik garis dari masing-masing persamaan kemudian menentukan titik potong dari kedua garis. Titik potong dari kedua garis tersebut adalah penyelesaian dari SPLDV.

Contoh Soal:

Tentukah penyelesaian dari SPLDV berikut:

\begin{cases}-x+y=1 \\ x+y=5 \end{cases}

Jawab:

Langkah pertama tentukan garis dari masing-masing persamaan.

grafik sistem persamaan linear

Setelah diperoleh grafik dari kedua persamaan, sekarang menentukan titik potong dari kedua garis dan menentukan koordinat dari titik potong tesebut.

spldv spltv

Dari grafik sistem persamaan linear diatas diperoleh titik potong dengan koordinat (2, 3), sehingga penyelesaian dari SPLDV adalah 2, 3.

Untuk membuktikan penyelesaian dari SPLDV, penyelesaian tersebut kita subtitusikan ke persamaan dengan x=2 dan y=3.

\begin{cases} -(2) + (3) = 1 \\ 2+3=5 \end{cases}

Pada metode grafik ini, terdapat beberapa jenis himpunan penyelesaian berdasarkan grafik persamaan, yaitu:

    • Jika kedua garis berpotongan, maka perpotonga kedua garis adalah penyelesaian dari SPLDV dan memiliki satu penyelesaian.
    • Jika kedua garis sejajar, maka SPLDV tidak memiliki penyelesaian
    • Jika kedua garis saling berhimpit, maka SPLDV memiliki tak berhingga himpunan penyelesaian.

Metode eliminasi

Pada metode eliminasi ini, menentukan penyelesaian dari variabel x dengan cara mengeliminasi variabel y, dan untuk menentukan penyelesaian variabel y dengan cara mengeliminasi variabel x.

Contoh Soal:

Tentukah penyelesaian dari sistem persamaan linear dua variabel berikut:

\begin{cases} -x +y=1 \cdots (I) \\ x+y=5 \cdots (II) \end{cases}

Jawab:

Pertama menentukan penyelesaian dari variabel x.

Mengeliminasi variabel y dapat dilakukan dengan mengurangi persamaan I dengan persamaan II.

Diperoleh persamaan akhir -2x = -4, bagi kedua ruas dengan -2, diperoleh penyelesaian x=2.

Kedua menentukan penyelesaian dari variabel x

Mengeliminasi variabel x dapat dilakukan dengan menjumlahkan persamaan I dengan persamaan II.

Diperoleh persamaan akhir 2y=6, bagi kedua ruas dengan 2, diperoleh penyelesaian y=3

Sehingga himpunan penyelesaian dari SPLDV tersebut adalah (2, 3).

Metode substitusi

Pada metode substitusi, langkah pertama yang dilakukan adalah mengubah salah satu persamaan menjadi persamaan fungsi, yaitu x sebagai fungsi dari y atau y sebagai fungsi dari x. Kemudian subtitusikan x atau y pada persamaan yang lain.

Contoh Soal: