Rumus Trigonometri (kelas 11)

Rumus Trigonometri – Pengantar

Dalam trigonometri, Sinus. Cosinus. Tangent, Cosecan, Secan, dan Cotangent bisa digunakan bersama-sama baik dengan penjumlahan atau pengurangan maupun perkalian. Rumus-rumus penjumlahan, pengurangan, atau perkalian dalam trigonometri dapat diturunkan dari rumus jumlah dua sudut atau selisih dua sudut.

Lihat juga materi StudioBelajar.com lainnya:

Integral Substitusi dan Integral Parsial

Fungsi Kuadrat

Rumus Trigonometri untuk Jumlah Dua Sudut dan Selisih Sudut

\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta

\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

Rumus Trigonometri untuk Sudut Rangkap

Pada rumus sudut rangkap, merupakan modifikasi dari penjumlahan dua sudut dengan \alpha = \beta, sehingga rumusnya menjadi sebagi berikut:

\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.

Subtitusikan \alpha = \beta pada persamaan diatas, sehingga menjadi:

\sin (\alpha + \alpha) = \sin \alpha \cos \alpha + \cos \alpha \sin \alpha.

Karena \sin \alpha \cos \alpha = \cos \alpha \sin \alpha, maka didapat:

Sifat I: \sin (2 \alpha) = 2 \sin \alpha \cos \alpha.

\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.

Subtitusikan \alpha = \beta pada persamaan diatas, sehingga menjadi:

\cos (\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha.

Karena \cos \alpha \cos \alpha = \cos^2 \alpha dan \sin \alpha \sin \alpha = \sin^2 \alpha, maka didapat:

Sifat II: \cos (2 \alpha) = \cos^2 \alpha - \sin^2 \alpha.

Karena hasil pada cos sudut rangkap (II) merupakan selisih kuadrat, maka bentuk ini bisa disubtitusi dengan identitas trigonometri:

\sin^2 \alpha + \cos^2 \alpha = 1 \rightarrow \sin^2 \alpha = 1 - \cos^2 \alpha.

Subtitusikan \sin^2 \alpha pada persamaan rumus sudut rangkap dari cos (II) menjadi:

\cos (2 \alpha) = \cos^2 \alpha - (1 - \cos^2 \alpha).

Buka kurung pada persamaan menjadi:

\cos (2 \alpha) = \cos^2 \alpha - 1 + \cos^2 \alpha).

Jumlah kan kuadrat dari kedua cos akan didapat:

Sifat III: \cos (2 \alpha) = 2 \cos^2 \alpha - 1.

\sin^2 \alpha + \cos^2 \alpha = 1 \rightarrow \cos^2 \alpha = 1 - \sin^2 \alpha.

Subtitusikan \cos^2 \alpha pada persamaan rumus sudut rangkap dari cos (II) menjadi:

\cos (2 \alpha) = (1 - \sin^2 \alpha) - \sin^2 \alpha.

Buka kurung pada persamaan menjadi:

\cos (2 \alpha) = 1 - \sin^2 \alpha - \sin^2 \alpha.

Jumlah kan kuadrat dari kedua cos didapat:

Sifat IV: \cos (2 \alpha) = (1 - 2 \sin^2 \alpha).

Rumus Trigonometri untuk Perkalian Sinus dan Cosinus

Rumus perkalian dari Sinus dan Cosinus diperoleh dari menjumlahkan dan mengurangi rumus dari sudut rangkap.

Rumus Pertama:

Jumlahkan \sin (\alpha + \beta) dengan \sin (\alpha - \beta):

rumus trigonometri perkalian

Dari perhitungan hasil diatas diperoleh:

\sin \alpha \cdot \sin \beta = \frac{1}{2} \{ \sin (\alpha + \beta) + \sin (\alpha - \beta) \}.

Rumus Kedua:

Kurangkan \sin (\alpha + \beta) dengan \sin (\alpha - \beta):

perkalian trigonometri