Fungsi, Fungsi Komposisi, dan Fungsi Invers

Relasi dan Fungsi

Pengertian Fungsi: Relasi dari himpunan A ke himpunan B disebut fungsi atau pemetaan jika dan hanya jika setiap anggota himpunan A berpasangan dengan tepat satu anggota himpunan B.

Suatu fungsi atau pemetaan dapat disajikan dalam bentuk himpunan pasangan terurut, rumus, diagram panah, atau diagram cartesius. Fungsi f yang memetakan himpunan A ke himpunan B ditulis dengan notasi:

f:A \rightarrow B

Dengan:

  • A disebut domain (daerah asal) dinotasikan D_f
  • B disebut Kodomain (daerah kawan) dinotasikan K_f
  • {y \epsilon B \mid(x,y) \epsilon R, x \epsilon A} disebut range (daerah hasil), dinotasikan dengan R_f

Sebagai contoh:

Contoh 1Contoh 2Contoh 3
 relasi dan fungsi bukan fungsi pengertian fungsi
Bukan fungsi karena terdapat anggota di A yang tidak dihubungkan dengan anggota di BBukan fungsi karena terdapat anggota di A yang dihubungkan lebih dari satu dengan anggota di BMeupakan fungsi karena setiap anggota di A tapat dihubungkan dengan satu anggota di B
Lihat juga materi StudioBelajar.com lainnya:

Turunan Fungsi Aljabar & Trigonometri

Persamaan Garis Lurus

Sifat-sifat Fungsi

  • Fungsi surjektif

Pada fungsi f:A \rightarrow B, jika setiap elemen di B mempunyai pasangan di A atau R_f = B, atau setiap y \epsilon B terdapat x \epsilon A sedemikian sehingga f(x) = y. Contoh:

surjektif

  • Fungsi Into

Pada fungsi f:A \rightarrow B, jika terdapat elemen di B yang tidak mempunyai pasangan di A.

Contoh:

into

  • Fungsi Injektif

Pada fungsi f:A \rightarrow B, jika setiap elemen di B mempunyai pasangan tepat satu elemen dari A.

Contoh:

injektif

  • Fungsi Bijektif

Jika fungsi f:A \rightarrow B merupakan fungsi surjektif sekaligus fungsi injektif.

Contoh:

bijektif

Fungsi Komposisi

Fungsi komposisi merupakan susunan dari beberapa fungsi yang terhubung dan bekerja sama.

Sebagai ilustrasi jika fungsi f dan g adalah mesin yang bekerja beriringan. Fungsi f menerima input berupa (x) yang akan diolah di mesin f dan menghasilkan output berupa f(x). Kemudian f(x) dijadikan input untuk diproses di mesin g sehingga didapat output berupa g(f(x)).

Ilustrasi tersebut jika dibuat dalam fungsi merupakan komposisi g dan f yang dinyatakan dengan g o f sehingga:

(g o f)(x) = g(f(x))

dengan syarat: R_f \cap D_g \not= {\O}.

fungsi komposisi

Komposisi bisa lebih dari dua fungsi jika f:A \rightarrow B, g:B \rightarrow C, dan h:C \rightarrow D, maka h o g o f:A \rightarrow D dan dinyatakan dengan:

(h o g o f)(x) = h(g(f(x)))

Sifat-sifat fungsi komposisi:

Operasi pada fungsi komposisi tidak besifat komutatif (g o f)(x) \not= (f o g)(x)

Operasi bersifat asosiatif: (h o g o f)(x) = (h o(g o f))(x) = ((h o g) o f)(x)

Contoh:

Jika f(x) = 2x + 3 dan (f o g)(x) = 2x^2 + 6x - 7, maka g(x) adalah

(f)(g(x)) = 2x^2 + 6x - 7

2(g(x)) + 3 = 2x^2 + 6x - 7

g(x) = x^2 + 3x - 5

Fungsi Invers

Jika fungsi f:A \rightarrow B memiliki relasi dengan fungsi g:B \rightarrow A, maka fungsi g merupakan invers dari f dan ditulis f^{-1} atau  g = f^{-1}. Jika f^{-1} dalam bentuk fungsi, maka f^{-1} disebut fungsi invers.