Matriks Dasar – Pengertian, Jenis, Transpose, dsb

Pengertian Matriks

Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.

Lihat juga materi StudioBelajar.com lainnya:

Vektor

Transformasi Geometri

Sebagai contoh:

Diketahui jumlah penjualan mobil jenis A, B, dan C, dengan harga jual masing-masing 146, 275, dan 528 (dalam juta) pada kota-kota P, Q, R, adalah :

JENIS MOBILHARGA MOBIL (JUTA)JUMLAH PENJUALAN TIAP KOTA (UNIT)
KOTA PKOTA QKOTA R
A146345641
B275453637
C528513246

Data penjualan mobil tersebut dapat dibuat dalam bentuk matriks sebagai berikut :

  • Matriks harga mobil adalah \begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix}
  • Matriks jumlah penjualan adalah \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Lebih sederhana bukan?

Ordo Matriks

Dijelaskan sebelumnya matriks terdiri dari unsur-unsur yang tersusun secara baris dan kolom. Jika banyak baris suatu matriks adalah m, dan banyak kolom suatu matriks adalah n, maka matriks tersebut memiliki ordo matriks atau ukuran m x n. Perlu diingat bahwa m dan n hanya sebuah notasi, sehingga tidak boleh dilakukan sebuah perhitungan (penjumlahan, perkalian). Pada contoh matriks jumlah penjualan mobil diatas diketahui bahwa:

pengertian dan ordo matriks

  • Banyak baris, m = 3
  • Banyak kolom, n = 3
  • Ordo matriks,  m x n = 3 x 3

Penamaan/notasi matriks menggunakan huruf kapital, sedangkan elemen-elemen di dalamnya dinotasikan dengan huruf kecil sesuai dengan penamaan matriks dan diberi indeks ij. Indeks tersebut menyatakan posisi elemen matriks, yaitu pada baris i dan kolom j. Sebagai contoh, matriks sebelumnya untuk penjualan mobil:

E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Dimana, e_{12} = 56 adalah elemen matriks yang berada pada baris ke-1 (i = 1) dan kolom ke-2 (j = 2). Begitu juga dengan elemen matriks yang lainnya.

Pada matriks terdapat dua jenis diagonal, yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan elemen-elemen dengan  yang bisa membentuk garis miring. Diagonal sekunder merupakan kebalikan dari garis miring diagonal utama. Perhatikan matriks berikut:

E = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}

Diagonal utama adalah elemen 34, 36, 46, sedangkan diagonal sekunder adalah elemen 41, 36, 51.

Matriks Identitas

Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan “I”. Contoh:

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Jenis-jenis Matriks

Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :

1. Matriks Baris dan Matriks Kolom

Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:

A = (1  4) atau B = (3  7  9) adalah matriks baris

\begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix} atau D = \begin{pmatrix} p \\ q \end{pmatrix} adalah matriks kolom

2. Matriks Persegi

Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.

Contoh:

A = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix} adalah matriks persegi berordo 3, atau

B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} adalah matriks persegi berordo 2.

3. Matriks Segitiga Atas dan Segitiga Bawah

Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i data-lazy-src=

Contoh:

A = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 3 & 7 \\ 0 & 0 & 4 \end{pmatrix} adalah matriks segitiga atas,

B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 4 & 6 & 4 \end{pmatrix} adalah matriks segitiga bawah.

4. Matriks Diagonal

Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.

Contoh:

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}

5. Matriks Skalar

Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.